Detecting Free Splittings in Relatively Hyperbolic Groups

نویسندگان

  • FRANÇOIS DAHMANI
  • DANIEL GROVES
چکیده

We describe an algorithm which determines whether or not a group which is hyperbolic relative to abelian groups admits a nontrivial splitting over a finite group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dehn Fillings and Elementary Splittings

We consider conditions on relatively hyperbolic groups about the non-existence of certain kinds of splittings, and show these properties persist in long Dehn fillings. We deduce that certain connectivity properties of the Bowditch boundary persist un-

متن کامل

Splittings and automorphisms of relatively hyperbolic groups

We study automorphisms of a relatively hyperbolic group G. When G is oneended, we describe Out(G) using a preferred JSJ tree over subgroups that are virtually cyclic or parabolic. In particular, when G is toral relatively hyperbolic, Out(G) is virtually built out of mapping class groups and subgroups of GLn(Z) fixing certain basis elements. When more general parabolic groups are allowed, these ...

متن کامل

Peripheral Splittings of Groups

We define the notion of a “peripheral splitting” of a group. This is essentially a representation of the group as the fundamental group of a bipartite graph of groups, where all the vertex groups of one colour are held fixed—the “peripheral subgroups”. We develop the theory of such splittings and prove an accessibility result. The theory mainly applies to relatively hyperbolic groups with conne...

متن کامل

Boundaries of strongly accessible hyperbolic groups

We consider splittings of groups over finite and two-ended subgroups. We study the combinatorics of such splittings using generalisations of Whitehead graphs. In the case of hyperbolic groups, we relate this to the topology of the boundary. In particular, we give a proof that the boundary of a one-ended strongly accessible hyperbolic group has no global cut point. AMS Classification 20F32

متن کامل

Conformal dimension and canonical splittings of hyperbolic groups

We prove a general criterion for a metric space to have conformal dimension one. The conditions are stated in terms of the existence of enough local cut points in the space. We then apply this criterion to the boundaries of hyperbolic groups and show an interesting relationship between conformal dimension and some canonical splittings of the group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999